Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect
نویسندگان
چکیده
An essential component of autonomous and flexible behavior in animals is active exploration of the environment, allowing for perception-guided planning and control of actions. An important sensory system involved is active touch. Here, we introduce a general modeling framework of Central Pattern Generators (CPGs) for movement generation in active tactile exploration behavior. The CPG consists of two network levels: (i) phase-coupled Hopf oscillators for rhythm generation, and (ii) pattern formation networks for capturing the frequency and phase characteristics of individual joint oscillations. The model captured the natural, quasi-rhythmic joint kinematics as observed in coordinated antennal movements of walking stick insects. Moreover, it successfully produced tactile exploration behavior on a three-dimensional skeletal model of the insect antennal system with physically realistic parameters. The effect of proprioceptor ablations could be simulated by changing the amplitude and offset parameters of the joint oscillators, only. As in the animal, the movement of both antennal joints was coupled with a stable phase difference, despite the quasi-rhythmicity of the joint angle time courses. We found that the phase-lead of the distal scape-pedicel (SP) joint relative to the proximal head-scape (HS) joint was essential for producing the natural tactile exploration behavior and, thus, for tactile efficiency. For realistic movement patterns, the phase-lead could vary within a limited range of 10-30° only. Tests with artificial movement patterns strongly suggest that this phase sensitivity is not a matter of the frequency composition of the natural movement pattern. Based on our modeling results, we propose that a constant phase difference is coded into the CPG of the antennal motor system and that proprioceptors are acting locally to regulate the joint movement amplitude.
منابع مشابه
The Stick Insect Antenna as a Biological Paragon for an Actively Moved Tactile Probe for Obstacle Detection
We propose the stick insect antenna as a biological model for the study of the tactile sense and its active use in guiding leg movements. During walking, stick insects perform rhythmic antennal movements which are well-coordinated with leg movements. Antennal contact with an obstacle can lead to rapid adaptation of the ongoing leg movement, e.g. by re-targeting of a swing movement. The typical ...
متن کاملA Computational Model for Rhythmic and Discrete Movements in Uni- and Bimanual Coordination
Current research on discrete and rhythmic movements differs in both experimental procedures and theory, despite the ubiquitous overlap between discrete and rhythmic components in everyday behaviors. Models of rhythmic movements usually use oscillatory systems mimicking central pattern generators (CPGs). In contrast, models of discrete movements often employ optimization principles, thereby refl...
متن کاملGaze shift reflex in a humanoid active vision system
Full awareness of sensory surroundings requires active attentional and behavioral exploration. In visual animals, visual, auditory and tactile stimuli elicit gaze shifts (head and eye movements) to aid visual perception of stimuli. Such gaze shifts can either be top-down attention driven (e.g. visual search) or they can be reflex movements triggered by unexpected changes in the surroundings. He...
متن کاملAn Analog Neural Oscillator Circuit for Locomotion Controller in Quadruped Walking Robot
In this report, we propose an analog neural oscillator circuit for a locomotion controller in a quadruped walking robot. Animal locomotion, such as walking, running, swimming and flying, is based on periodic rhythmic movements. These rhythmic movements are driven by the biological neural network, called the central pattern generator (CPG). In recent years, many researchers have applied CPG to t...
متن کاملA Hybrid Control Method for Stable Operation of Active Power Filters in Three-Phase Four-Wire Networks
The main goal of this study is the use of Lyapunov’s stability theory to a three-phase four-wire shunt active power filter (SAPF), since this method has been applied effectively to other areas of converter. The dynamic model of the SAPF is first established, after that, a combination of fuzzy tracking control and Lyapunov function is suggested in order to impose a desired transient waveform on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015